Category Archives: Elektronik

  • 0

Low-Drop Spannungsregler HT73xx

Category : Arduino , Elektronik

Ausdrucken Ausdrucken

Es wird mal wieder Zeit für einen neuen Beitrag.

Ich möchte Euch heute einen tollen Spannungsregler vorstellen, der mit einem Ruhestrom von gerade einmal sagenhaften 4 – 8 μA auskommt.
Daher ideal geeignet für Schaltungen, die mit Akku, oder Batterien laufen sollen.

Die Eingangsspannung  muss lediglich 0,09 V höher sein, als die Ausgangsspannung, die der Regler ausgeben kann (siehe weiter unten die möglichen Ausgangsspannungen der HT73xx-Serie.)

„Read More“

  • 4

Optokoppler

Ein Optokoppler ist leichter nutzbar, als man anfänglich vielleicht denkt. Doch klären wir erstmal, was man mit einem Optokoppler macht:

Mit einem Optokoppler überträgt man Signale und zwar nicht elektrisch, sondern mittels Licht, denn ein Optokoppler ist eigentlich nichts anderes als eine Leuchtdiode und ein Fototransistor in einem einzigen Gehäuse.

Sichtbar wird das im Schaltplan-Symbol des Optokopplers:

Der Vorteil der Übertragungsmethode mittels Licht ist, dass dabei keine elektrische Verbindung zwischen der Leuchtdiode und dem Fototransistor besteht.
Leuchtet die Fotodiode auf, schaltet auf der anderen Seite der Fototransistor durch.

Wir sprechen daher auch von einer galvanischen Trennung zweier Stromkreise (auch mit möglichen unterschiedlichen Spannungsniveaus) und wir können damit Signale innerhalb der Schaltungen hin- und herschicken.
Das ist vor allem dann notwendig bei einer gefährlich hohen Spannung, störverseuchten Umgebungen und zur Verhinderung von Masseschleifen.
Auch ist es möglich, das Signal mittels Optokoppler zu invertieren.

Spezielle Einsatzgebiete wären beispielsweise in Maschinensteuerungen, Relaisansteuerungen, Computern, medizinischen Apparaten, usw.

Die große Anzahl an Optokoppler sind nur für digitale Signale nutzbar (0 oder 1).
Zur Trennung analoger Signalen gibt es spezielle analoge Optokoppler.

Ich verwende hier einen CNY17/4-Optokoppler. Falls Ihr einen anderen habt, dann müsst Ihr unbedingt einen Blick ins Datenblatt werfen.

Berechnen des LED-Vorwiderstands

Der LED-Teil des Optokopplers benötigt UNBEDINGT einen Vorwiderstand, der an die Spannung der Schaltung angepasst ist. Berechnet wird das ganz genau so wie man den Vorwiderstand einer ganz normalen LED berechnet.
Hierzu brauchen wir nur das ohmsche Gesetz zum berechnen:

In unserem Test hat die Schaltung eine Spannung von U = 5V.
Die Spannung der Foto-LED von 1.5V ist ein Mittelwert, denn laut Datenblatt liegt UF zwischen 1,39V – 1.65V.
IF liegt bei 10mA.

    \[ R = \frac{U - U_F}{I_F} = \frac{5V - 1.5V}{0,010 A (10mA)} = 350\Omega \]

Somit brauchen wir einen 350Ω-Widerstand.

Berechnen des Arbeitswiderstands

Auf der anderen Seite (Fototransistor) brauchen wir noch einen Arbeitswiderstand für die Schaltung.

    \[ R_A = \frac{V_c_c * SF}{I_F * CTR} = \frac{12V * 3}{0,010 A (10mA) * (160/100) } = 2250\Omega \]

RA:      Arbeitswiderstand
Vcc:     Betriebsspannung am Ausgang
CTR:   Stromübertragungsfaktor (engl. Current Transfer Ratio)
IF:        Vorwärtsspannung LED
SF:       Sicherheitsfaktor

Wir brauchen wieder unser Datenblatt … In diesem suchen wir uns den minimalen ausgewiesenen CTR für unseren Optokoppler. Dieser ist abhängig vom Typ, Temperatur und möglicherweise vom LED-Strom.

Normale Transistoren haben ja eine Stromverstärkung, Optokoppler eine CTR (Current Transfer Ratio).  Damit kann man abschätzen wieviel Strom man am Eingang braucht um einen bestimmten Strom am Ausgang zu schalten.

Der Sicherheitsfaktor ist mindestens 2, da die Lebensdauer eines Optokopplers in der Regel auf die halbe optische Leistung ausgelegt ist.
Je höher unser Sicherheitsfaktor, desto höher die Lebensdauer des Bauteils.
Man sollte daher zwischen einem Wert von 2-5 auswählen.

Kompromisse muss man eingehen, denn um die maximale Schaltgeschwindigkeit eines Optokopplers zu erreichen, muss man mit Nennstrom und minimalem Arbeitswiderstand arbeiten.
Zum einfachen Schalten von Relais, Motoren und dergleichen spielt die Schaltgeschwindigkeit keine große Rolle, da auch mit ausreichendem Sicherheitsfaktor der Koppler schnell genug schaltet.

Und für andere Fälle ist man mit einem High-Speed-Optokoppler besser bedient. Kostet aber halt ein wenig mehr.

Hat der Optokoppler am Transistorausgang einen herausgeführten Basisanschluss – so wie es bei dem CNY17 der Fall ist, kann man durch einen passenden Widerstand zwischen Basis und Emitter die Abschaltgeschwindigkeit deutlich steigern.
Allerdings erkauft man sich das dann auf Kosten der Empfindlichkeit.

Der Arbeitswiderstand ist in den weiter unten abgebildeten Grundschaltungen R4, bzw. R6.

Verbraucher Berechnen

Möchte man mit dem Ausgang gleich einen Verbraucher, beispielsweise ein Relais schalten, dann muss man vorher sicherstellen, den Optokopplerausgang nicht zu überlasten.
Beispiel: Wir haben ein 12V Relais mit einem Spulenwiderstand von 400 Ω (Fin 36.11.9.012-Relais).

Kleine Anmerkung: In der Regel steht der Spulenwiderstand auch im Datenblatt. Falls nicht, könt Ihr diesen wie folgt messen:
Voltmeter auf „Ω“ stellen und an den Pins des Spulensymbols messen:

 

Auch bei der Lastberechnung gilt das ohmsche Gesetz:

    \[ I = \frac{U}{R} = \frac{12V}{400\Omega } = 0,03 A = 30mA \]

Der CNY17 ist nach dem Datenblatt mit bis zu 60 mA am Ausgang belastbar.
Das funktioniert wunderbar ohne weitere Mittel (aber die Freilaufdiode am Relais nicht vergessen!).

Ist die Belastung höher, beispielsweise bei mehr als einem Relais, brauchen wir weitere Bauteile, wenn wir unseren Optokoppler nicht grillen möchten.

Mit der maximalen 60 mA-Belastung können wir beispielsweise einen Transistor, einen MOSFET oder eine Darlington-Schaltung/-IC schalten um die große Last dahinter ansteuern zu können.
Optokoppler-Grundschaltungen:

Nichtinvertierende Grundschaltung

 

Invertierende Grundschaltung am Eingang

 

Invertierende Grundschaltung am Ausgang (häufigste Schaltung)

 

 

 


  • 0

Spannungsregler variabel mit LM317

Ausdrucken Ausdrucken

Heute bauen wir uns einen regelbaren Spannungsregler und verwenden hierzu einen LM317-Baustein.

Im Gegensatz zu den meisten Reglern gibt es beim LM317 praktisch keine maximale Eingangsspannung, so lange die Differenz von Ein- zu Ausgangsspannung nicht höher als 40V ist.
Das Ganze funktioniert, da der LM317 keinen direkten Massebezug hat, nur den über den Widerstand zur Einstellung der Ausgangsspannung.

„Read More“

  • 0

mAh – Milliamperestunden – Was bedeutet das?

Category : Elektronik

Ausdrucken Ausdrucken

Wenn wir Batterien oder Akkus verwenden, verwenden wir die darin gespeicherte Ladungsmenge um ein elektronisches Gerät betreiben zu können.

Dies wird in mAh (Milliamperestunden) angegeben und stellt die Ladungsmenge dar, die in einer Stunde durch das entsprechende Gerät und Leiter fließt.
Dabei wird vorausgesetzt, dass der Stromfluss konstant bei 1 mA liegt.

Auf Batterien steht nur selten die Kapazität drauf. Eine Liste bei Wikipedia über die Baugrößen von Batterien hilft da weiter.

Eine Batterie, oder ein Akku mit einer Kapazität von beispielsweise 1200 mAh kann bei Raumtemperatur (man hat die Raumtemperatur als ideale Temperatur festgelegt) eine Stunde lang 1200 mAh oder auch 100 Stunden 12 mAh abgeben.

Hierbei gilt zu beachten, dass die Stromstärke des Verbrauchers auch schwanken kann, beispielsweise bei Stand-By-Betrieb, oder Zuschaltung von induktiven Lasten wie Relais, Magnetventilen, usw. und so die Ladungsmenge der Batterie unterschiedlich schnell abnehmen kann.

Man kann daher nur ungefähre Angaben machen, wie lange eine Batterie, oder ein Akku halten wird/hält.

 


  • 0

GM328 Transistor-Tester

Category : Elektronik

Ausdrucken Ausdrucken

Heute möchte ich Euch ein wirklich preisgünstiges und nützliches Tool vorstellen.
Ich benutze es jetzt nun schon seit über einem Jahr und ich möchte es nicht mehr missen.
Ich meine den GM328 Transistor-Tester, der wohl auf dem OpenSource-Projekt von Markus Frejek basiert und weiterentwickelt wurde.

Basierend auf einem ATMega 328-Kontroller haben wir hier ein Multifunktionsgerät, dass für rund 10-20 EUR so manch ein Multimeter (Bauteilmessungen) ziemlich alt aussehen lässt.

„Read More“

  • 0

Gegurtete Bauteile leicht(er) lösen

Tags :

Category : Elektronik

Ausdrucken Ausdrucken

gegurtete BauteileWer kennt das Problem nicht? Kauft man von einer Bauteilgruppe mehrere Einheiten, sind diese möglicherweise gegurtet.
Dieser Gurt besteht in der Regel aus einem Streifen Karton, auf dem die bedrahteten Enden aufgeklebt sind. Und das meist so bombenfest, dass man sie nicht rückstandsfrei daraus befreien kann.

„Read More“


  • 2

Lichtschranke (mit dem Arduino)

Category : Arduino , Elektronik

Ausdrucken Ausdrucken

k153pDer Aufbau einer Lichtschranke ist nicht sehr schwer. Vereinfacht ausgedrückt haben wir nur zwei Zustände: Der Infrarotstrahl ist nicht unterbrochen (=0), oder der Strahl wurde unterbrochen (=1).

Ich habe für den Aufbau zuerst den Temic K153P-Lichtsensor verwendet (siehe Bild rechts), den gibt es ganz günstig bei Pollin (Infrarot-Lichtschrankenpaare Temic K153P – 10 Paare für 0,95 EUR).

Die Schwierigkeit mit diesem Sensor war, dass ich kein korrektes 0- oder 1-Signal bekam, dass ich mit dem Controller verarbeiten konnte.

analogWrite() mit Pi mal Daumen rechnen mag zwar gehen, aber ich wollte ein sauberes, digitales Signal.

Bei microcontroller.net fand ich dann eine wunderbare Schaltung, die diesem Wunsch nachgekommen ist.

Da ich keinen CD4093N-IC zur Hand habe, habe ich hierfür einen 74HC132N genommen.
Tut ebenfalls, was er soll und preislich ist er sogar wenige Cent günstiger.

Den Rest hat man ja eh daheim und dann geht es auch schon los.

„Read More“

  • 0

Schieberegister – Was ist das?

Ausdrucken Ausdrucken

74hc595Das Schieberegister erweitert zum Beispiel die Eingangs- und/oder die Ausgangspins eines Mikrocontrollers.

Hierbei gilt zu beachten, dass man für Eingangs- und Ausgangspins das jeweilig passende Schieberegister verwendet.

Das wohl bekannteste Schieberegister trägt die Bezeichnung „74HC595“ und ist ein Schieberegister des SIPO-Typs (SIPO steht für Serial in, Parallel out, was bedeutet, dass es ein Ausgaberegister ist).

Das Pendant hierzu – beispielsweise ein „74LS299“ – ist ein Schieberegister des Typs PISO (PISO steht für Parallel in, Serial out). Mit diesem kann man den Status eines Pins des Schieberegisters abfragen.

Diese beiden Schieberegister gehören zu der Klasse der 8Bit-Schieberegister. Das heißt, man kann mit diesem Baustein 8 Pins (jeweils Ein- oder Ausgang des verwendeten Typs) ansteuern.

Es gibt auch eine Mischform, den „74LS194A“. Dieser ist ein 4bit-Schieberegister und besitzt 4 Ein- und 4 Ausgabepins in einem Baustein.

„Read More“

  • 0

Widerstände – der kleinste Nenner

Category : Elektronik

Ausdrucken Ausdrucken

Der elektrische Widerstand ist, wie der Name schon sagt, ein Widerstand gegen die Spannung.
An jedem Widerstand wird die Spannung geringer, sprich, sie fällt ab.

Somit ist es uns möglich, Bedingungen für andere Bauteile herzustellen, beispielsweise eine LED zum Leuchten zu bringen, ohne dass sie kaputt geht. Das geht mit einem (Vor-)Widerstand, der die Spannung bremst.

Das Ganze hat aber auch einen Haken. Ein Widerstand ist ja wie eine Bremse am Fahrrad, oder am Auto. Durch die Bremswirkung entsteht Wärme.
Viel Wärme, wenn aus hoher Geschwindigkeit heruntergebremst wird und wenig Wärme im anderen Fall.
In der Elektronik ist es genau so. Je höher die Eingangsspannung und je geringer die Ausgangsspannung, desto höher die Wärmeentwicklung.

Ziehen wir das obig genannte Beispiel mit der LED noch einmal heran:

„Read More“

  • 0

Temperatursensor LM 35

Category : Arduino , Elektronik

Ausdrucken Ausdrucken

LM35_small

Es gibt verschiedene Sensortypen, um einen Temperaturwert auszulesen.

Verwendung findet hier heute der Feld-, Wald- und Wiesen-Temperatursensor LM 35 und zwar um genau zu sein, der LM 35 DZ.
Es gäbe beispielsweise noch einen CZ-Typen, der einen anderen Temperaturbereich auslesen kann, so wie einen DT-Typ mit anderem Gehäuse.

Alternativen wären auch noch der LM75, so wie der LM 335 (rechnet in Kelvin, statt in °C) da, die beide zur Messung von Minustemperaturen besser geeignet sind als der LM35.

Es gibt viele unterschiedliche Typen, auch preislich weichen sie enorm voneinander ab. Unseren LM 35 DZ-Typ bekommt man schon so für rund 1 EUR und man kann mit ihm viele schöne Dinge machen in Verbindung mit anderen Bauteilen und/oder einem Microcontroller wie dem Arduino.

„Read More“